MATH2068 MATHEMATICAL ANALYSIS II (2021-22)

CHI-WAI LEUNG

1. Differentiation

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a realvalued function defined on I.

Definition 1.1. Let $c \in I$. We say that f is differentiable at c if the following limit exists:

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

In this case, we write $f^{\prime}(c)$ for the above limit and we call it the derivative of f at c. We say that if f is differentiable on I if $f^{\prime}(x)$ exists for every point x in I.

Proposition 1.2. Let $c \in I$. Then $f^{\prime}(c)$ exists if and only if there is a function φ defined on I such that the function φ is continuous at c and

$$
f(x)-f(c)=\varphi(x)(x-c)
$$

for all $x \in I$.
In this case, $\varphi(c)=f^{\prime}(c)$.
Proof. Assume that $f^{\prime}(c)$ exists. Define a function $\varphi: I \rightarrow \mathbb{R}$ by

$$
\varphi(x)= \begin{cases}\frac{f(x)-f(c)}{x-c} & \text { if } x \neq c \\ f^{\prime}(c) & \text { if } x=c\end{cases}
$$

Clearly, we have $f(x)-f(c)=\varphi(x)(x-c)$ for all $x \in I$. We want to show that the function φ is continuous at c. In fact, let $\varepsilon>0$, by the definition of the limit of a function, there is $\delta>0$ such that

$$
\left|f^{\prime}(c)-\frac{f(x)-f(c)}{x-c}\right|<\varepsilon
$$

whenever $x \in I$ with $0<|x-c|<\delta$. Therefore, we have $\left|f^{\prime}(c)-\varphi(x)\right|<\varepsilon$ as $x \in I$ with $0<|x-c|<\delta$. Since $\varphi(c)=f^{\prime}(c)$, we have $\left|f^{\prime}(c)-\varphi(x)\right|<\varepsilon$ as $x \in I$ with $|x-c|<\delta$, hence the function φ is continuous at c as desired.
The converse is clear since $\varphi(x)=\frac{f(x)-f(c)}{x-c}$ if $x \neq c$. The proof is complete.
Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.
Proof. By using Proposition 1.2, if $f^{\prime}(c)$ exists, then there is a function φ defined on I such that the function φ is continuous at c and we have $f(x)-f(c)=\varphi(x)(x-c)$ for all $x \in I$. This implies that $\lim _{x \rightarrow c} f(x)=f(c)$, so f is continuous at c as desired.

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function $f(x):=|x|$ is a continuous function on \mathbb{R} but $f^{\prime}(0)$ does not exist.

Date: February 7, 2022.

Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differentiable at $c \in I$. We have the following assertions.
(i) $(f+g)^{\prime}(c)$ exists and $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
(ii) The product $(f \cdot g)^{\prime}(c)$ exists and $(f \cdot g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.
(iii) If $g(c) \neq 0$, then we have $\left(\frac{f}{g}\right)^{\prime}(c)$ exists and $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{g(c)^{2}}$.

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (ii), note that we have

$$
\frac{f(x) g(x)-f(c) g(c)}{x-c}=\frac{f(x)-f(c)}{x-c} g(x)+f(c) \frac{g(x)-g(c)}{x-c}
$$

for all $x \in I$ with $x \neq c$. From this, together with Proposition 1.3, Part (ii) follows.
For Part (iii), by using Part (ii), it suffices to show that $\left(\frac{1}{g}\right)^{\prime}(c)=-\frac{g^{\prime}(c)}{g(c)^{2}}$. In fact, $g^{\prime}(c)$ exists, so g is continuous at c. Since $g(c) \neq 0$, there is $\delta_{1}>0$ so that $g(x) \neq 0$ for all $x \in I$ with $|x-c|<\delta_{1}$. Then we have

$$
\frac{1}{x-c}\left(\frac{1}{g(x)}-\frac{1}{g(c)}\right)=\frac{1}{x-c}\left(\frac{g(c)-g(x)}{g(x) g(c)}\right)
$$

for all $x \in I$ with $0<|x-c|<\delta_{1}$. By taking $x \rightarrow c$, we see that $\left(\frac{1}{g}\right)^{\prime}(c)$ exists and $\left(\frac{1}{g}\right)^{\prime}(c)=\frac{-g^{\prime}(c)}{g(c)^{2}}$. The proof is complete.

Proposition 1.6. (Chain Rule): Let f, g be functions defined on \mathbb{R}. Let $d=f(c)$ for some $c \in \mathbb{R}$. Suppose that $f^{\prime}(c)$ and $g^{\prime}(d)$ exist. Then the derivative of composition $(g \circ f)^{\prime}(c)$ exists and $(g \circ f)^{\prime}(c)=$ $g^{\prime}(d) f^{\prime}(c)$.
Proof. By using Proposition 1.2, we want to find a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
g \circ f(x)-g \circ f(c)=\varphi(x)(x-c)
$$

for all $x \in \mathbb{R}$ and the function $\varphi(x)$ is continuous at c, and so $(g \circ f)^{\prime}(c)=\varphi(c)$.
Let $y=f(x)$. By using Proposition 1.2 again, there is a function and $\beta(y)$ so that $g(y)-g(d)=$ $\beta(y)(y-d)$ for all $y \in \mathbb{R}$ and $\beta(y)$ is continuous at d. Similarly, there is a function $\alpha(x)$ we have $f(x)-f(c)=\alpha(x)(x-c)$ for all $x \in \mathbb{R}$ and $\alpha(x)$ is continuous at c. These two equations imply that

$$
g \circ f(x)-g \circ f(c)=\beta(f(x))(f(x)-f(c))=\beta(f(x)) \alpha(x)(x-c)
$$

for all $x \in \mathbb{R}$. Let $\varphi(x):=\beta(f(x)) \cdot \alpha(x)$ for $x \in \mathbb{R}$. Since $\beta(d)=g^{\prime}(d)$ and $\alpha(c)=f^{\prime}(c)$, we see that $\varphi(c)=\beta(f(c)) \alpha(c)=g^{\prime}(d) f^{\prime}(c)$. It remains to show that the function φ is continuous at c. In fact, $f^{\prime}(c)$ exists, so f is continuous at c, and hence the composition $\beta \circ f(x)$ is continuous at c. In addition, the function α is continuous at c. Therefore, the function $\varphi:=(\beta \circ f) \cdot \alpha$ is continuous at c, and so $(g \circ f)^{\prime}(c)$ exists with $(g \circ f)^{\prime}(c)=\varphi(c)=g^{\prime}(d) f^{\prime}(c)$. The proof is complete.

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto J. Let $d=f(c)$ for $c \in I$. Assume that $f^{\prime}(c)$ exists and the inverse of f, write $g:=f^{-1}$, is continuous at d. If $f^{\prime}(c) \neq 0$, then $g^{\prime}(d)$ exists and $g^{\prime}(d)=\frac{1}{f^{\prime}(c)}$.

Proof. Let $y=f(x)$. Note that by using Proposition 1.2, there is a function F on I such that $f(x)-f(c)=F(x)(x-c)$ for all $x \in I$ and F is continuous at c with $F(c)=f^{\prime}(c) \neq 0 . \quad F$ is continuous at c, so there are open intervals I_{1} and J_{1} such that $c \in I_{1} \subseteq I$ and $d \in f\left(I_{1}\right)=J_{1}$, moreover, $F(x) \neq 0$ for all $x \in I_{1}$. Note that since $f(x)-f(c)=F(x)(x-c)$, we have $y-d=$ $f(g(y))-f(g(c))=F(g(y))(g(y)-g(d))$ for all $y \in J_{1}$. Since $F(x) \neq 0$ for all $x \in I_{1}$, we have $g(y)-g(d)=F(g(y))^{-1}(y-d)$ for all $y \in J_{1}$. Note that the function $F(g(y))^{-1}$ is continuous at d. Thus, $g^{\prime}(d)$ exists and $g^{\prime}(d)=F(g(d))^{-1}=\frac{1}{f^{\prime}(c)}$ as desired.

Definition 1.8. Let D be a non-empty subset of \mathbb{R} and let g be a real-valued function defined on D.
(i) We say that g has an absolute maximum (resp. absolute minimum) at a point $c \in D$ if $g(c) \geq g(x)$ (resp. $g(c) \leq g(x))$ for all $x \in D$.
In this case, c is called an absolute extreme point of g.
(ii) We say that g has a local maximum (resp. local minimum) at a point $c \in D$ if there is $r>0$ such that $(c-r, c+r) \subseteq D$ and $g(c) \geq g(x)$ (resp. $g(c) \leq g(x))$ for all $x \in(c-r, c+r)$. In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point, for example if $g(x):=x$ for $x \in[0,1]$, then g has an absolute maximum point at $x=1$ of g but 1 is not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local extreme point at $c \in I$ and $f^{\prime}(c)$ exists. Then $f^{\prime}(c)=0$.
Proof. Without lost the generality, we may assume that f has local minimum at c. Then there is $r>0$ such that $f(x) \geq f(c)$ for $x \in(c-r, c+r) \subseteq I$. Since $f^{\prime}(c)$ exists, by using Proposition 1.2 , there is a function φ defined on I such that $f(x)-f(c)=\varphi(x)(x-c)$ for all $x \in I$ and φ is continuous at c with $\varphi(c)=f^{\prime}(c)$. Thus, we have $\varphi(x)(x-c) \geq 0$ for all $x \in(c-r, c+r)$. From this we see that $\varphi(x) \geq 0$ as $x \in(c, c+r)$, similarly, $\varphi(x) \leq 0$ as $x \in(c-r, c)$. The function φ is continuous at c, so $\varphi(c)=0$ and hence $f^{\prime}(c)=\varphi(c)=0$ as desired.

Proposition 1.11. Rolle's Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Assume that $f^{\prime}(x)$ exists for all $x \in(a, b)$ and $f(a)=f(b)$. Then there is a point $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Proof. Recall a fact that every continuous function defined a compact attains absolute points, that is, there are c_{1} and c_{2} such that $f\left(c_{1}\right)=\min _{x \in[a, b]} f(x)$ and $f\left(c_{2}\right)=\max _{x \in[a, b]} f(x)$, hence, $f\left(c_{1}\right) \leq$ $f(x) \leq f\left(c_{2}\right)$ for all $x \in[a, b]$. If $f\left(c_{1}\right)=f\left(c_{2}\right)$, then $f(x) \equiv f\left(c_{1}\right)=f\left(c_{2}\right)$ for all $x \in[a, b]$, so $f^{\prime}(x) \equiv 0$ for all $x \in(a, b)$.
Otherwise, suppose that $f\left(c_{1}\right)<f\left(c_{2}\right)$. Since $f(a)=f(b)$, we have $c_{1} \in(a, b)$ or $c_{2} \in(a, b)$. We may assume that $c_{1} \in(a, b)$. Then $x=c_{1}$ is a local minimum point of f. Therefore, $f^{\prime}\left(c_{1}\right)=0$ by using Proposition 1.10.

Theorem 1.12. Main Value Theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and is differentiable on (a, b), then there is a point $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
Proof. Define a function $\varphi:[a, b] \rightarrow \mathbb{R}$ by

$$
\varphi(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)
$$

for $x \in[a, b]$. Note that the function φ is continuous on $[a, b]$ with $\varphi(a)=\varphi(b)=0$, in addition, $\varphi^{\prime}(x)$ exists for all $x \in(a, b)$. The Rolle's Theorem implies that there is a point $c \in(a, b)$ such that

$$
0=\varphi^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

The proof is complete.
Corollary 1.13. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and is differentiable on (a, b). If $f^{\prime} \equiv 0$ on (a, b), then f is a constant function.

Proof. Fix any point $z \in(a, b)$. Let $x \in(z, b]$. By using the Mean Value Theorem, there is a point $c \in(z, x)$ such that $f(x)-f(z)=f^{\prime}(c)(x-z)$. If $f^{\prime} \equiv 0$ on (a, b), so $f(x)=f(z)$ for all $x \in[z, b]$. Similarly, we have $f(x)=f(z)$ for all $x \in[a, z]$. The proof is complete.

Definition 1.14. We call a function f is a C^{1}-function on I if $f^{\prime}(x)$ exists and continuous on I. In addition, we define the n-derivatives of f by $f^{(n)}(x):=f^{(n-1)}(x)$ for $n \geq 2$, provided it exists. In this case, we say that f is a C^{n}-function on I. In particular, we call f a C^{∞}-function (or smooth function) if f is a C^{n}-function for all $n=1,2 \ldots$.
For example, the exponential function $\exp x$ is a very important example of smooth function on \mathbb{R}.
Corollary 1.15. Inverse Mapping Theorem: Let f be a C^{1}-function on an open interval I and let $c \in I$. Assume that $f^{\prime}(c) \neq 0$. Then there is $r>0$ such that the function f is a strictly monotone function on $(c-r, c+r) \subseteq I$. If we let $J:=f(c-r, c+r))$, then the inverse function $g:=f^{-1}: J \rightarrow$ $(c-r, c+r)$ is also a C^{1}-function.
Proof. We may assume that $f^{\prime}(c)>0 . f^{\prime}(x)$ is continuous on I, so there is $r>0$ such that $f^{\prime}(x)>0$ for all $x \in(c-r, c+r) \subseteq I$. For any x_{1} and x_{2} in $(c-r, c+r)$ with $x_{1}<x_{2}$, by using the Mean Value Theorem, we have $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(v)\left(x_{2}-x_{1}\right)$ for some $v \in\left(x_{1}, x_{2}\right)$, and hence $f\left(x_{2}\right)>f\left(x_{1}\right)$. Therefore the restriction of f on $(c-r, c+r)$ is a strictly increasing function, thus, it is an injection. Let $J:=f((c-r, c+r))$. Then J is an interval by the Immediate Value Theorem. Moreover, J is an open interval because f is strictly increasing. Also, if we let $g=f^{-1}$ on J, then g is continuous on J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore, by Proposition 1.7, we see that $g^{\prime}(y)$ exists on J and $g^{\prime}(y)=\frac{1}{f^{\prime}(x)}$ for $y=f(x)$ and $x \in(c-r, c+r)$. Therefore, g is a C^{1} function on J. The proof is complete.

Proposition 1.16. Cauchy Mean Value Theorem: Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions with $g(a) \neq g(b)$. Assume that f, g are differentiable functions on (a, b) and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is a point $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$.
Proof. Define a function ψ on $[a, b]$ by $\psi(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$ for $x \in[a, b]$. Then by using the similar argument as in the Mean Value Theorem, the result follows.

Theorem 1.17. Lagrange Remainder Theorem: Let f be a $C^{(n+1)}$ function defined on (a, b). Let $x_{0} \in(a, b)$. Then for each $x \in(a, b)$, there is a point c between x_{0} and x such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Proof. We may assume that $x_{0}<x<b$. Case: We first assume that $f^{(k)}\left(x_{0}\right)=0$ for all $k=0,1, \ldots, n$. Put $g(t)=\left(t-x_{0}\right)^{n+1}$ for $t \in\left[x_{0}, x\right]$. Then $g^{\prime}(t)=(n+1)\left(t-x_{0}\right)^{n}$ and $g\left(x_{0}\right)=0$. Then by the Cauchy Mean Value Theorem, there is $x_{1} \in\left(x_{0}, x\right)$ such that $\frac{f(x)}{g(x)}=\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}$. Using the same step for f^{\prime} and g^{\prime} on $\left[x_{0}, x_{1}\right]$, there is $x_{2} \in\left(x_{0}, x_{1}\right)$ such that $\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}=\frac{f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{1}\right)-g^{\prime}\left(x_{0}\right)}=\frac{f^{(2)}\left(x_{2}\right)}{g(2)\left(x_{2}\right)}$. To repeat the same step, there are $x_{1}, x_{2}, \ldots, x_{n+1}$ in (a, b) such that $x_{k} \in\left(x_{0}, x_{k-1}\right)$ for $k=1,2, \ldots, n+1$ and

$$
\frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}=\cdots=\frac{f^{(n+1)}\left(x_{n+1}\right)}{g^{(n+1)}\left(x_{n+1}\right)} .
$$

In addition, note that $g^{n+1}\left(x_{n+1}\right)=(n+1)$!. Therefore, we have $\frac{f(x)}{g(x)}=\frac{f^{(n+1)}\left(x_{n+1}\right)}{(n+1)!}$, and hence $f(x)=\frac{f^{(n+1)}\left(x_{n+1}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$. Note $x_{n+1} \in\left(x_{0}, x\right)$ and thus, the result holds for this case.

For the general case, put $G(x)=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ for $x \in(a, b)$. Note that we have $G\left(x_{0}\right)=G^{\prime}\left(x_{0}\right)=\cdots=G^{(n)}\left(x_{0}\right)=0$. Then by the Claim above, there is a point $c \in\left(x_{0}, x\right)$ such that $G(x)=\frac{G^{(n+1)}(c)}{(n+1)!}$. Since $G^{(n+1)}(c)=f^{(n+1)}(c), f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}$. The proof is complete.

Example 1.18. Recall that the exponential function e^{x} is defined by

$$
e^{x}:=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}:=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!}
$$

for $x \in \mathbb{R}$. Note that the above limit always exists for all $x \in \mathbb{R}$ (shown in the last chapter). Show that the natural base e is an irrational number.
Put $f(x):=e^{x}$ for $x \in \mathbb{R}$. It is a known fact f is a C^{∞} function and $f^{(n)}(x)=e^{x}$ for all $x \in \mathbb{R}$. Fix any $x>0$. Then by the Lagrange Theorem, for each positive integer n, there is $c_{n} \in(0, x)$ such that

$$
f(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}+\frac{e^{c_{n}}}{(n+1)!} x^{n+1} .
$$

In particular, taking $x=1$, we have

$$
0<\frac{e^{c_{n}}}{(n+1)!}=e-\sum_{k=0}^{n} \frac{1}{k!}<\frac{3}{(n+1)!}
$$

for all positive integer n. Now if $e=p / q$ for some positive integers p and q, and thus, we have

$$
0<\frac{p}{q}-\sum_{k=0}^{n} \frac{1}{k!}<\frac{3}{(n+1)!}
$$

for all $n=1,2 \ldots$ Now we can choose n large enough such that $(n!) \frac{p}{q} \in \mathbb{N}$. It leads to a contradiction because we have

$$
0<(n!) \frac{p}{q}-(n!) \sum_{k=0}^{n} \frac{1}{k!}<\frac{3(n!)}{(n+1)!}=\frac{3}{n+1}<1 .
$$

Therefore, e is irrational.
Proposition 1.19. Let f be a C^{2} function on an open interval I and $x_{0} \in I$. Assume that $f^{\prime}\left(x_{0}\right)=0$. Then f has local maximum (resp. local minimum) at x_{0} if $f^{(2)}\left(x_{0}\right)<0\left(\right.$ resp. $\left.f^{(2)}\left(x_{0}\right)>0\right)$.
Proof. We assume that $f^{(2)}\left(x_{0}\right)>0$. We want to show that x_{0} is a local minimum point of f. The proof of another case is similar. Note that for any $x \in I \backslash\left\{x_{0}\right\}$. Then by the Lagrange Theorem, there is a point c between x_{0} and x such that

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{(2)}\left(x_{0}\right)\left(x-x_{0}\right)^{2}=f\left(x_{0}\right)+\frac{1}{2} f^{(2)}\left(x_{0}\right)\left(x-x_{0}\right)^{2} .
$$

$f^{(2)}$ is continuous at x_{0} and $f^{(2)}\left(x_{0}\right)>0$, and so there is $r>0$ such that $f^{(2)}(x)>0$ for all $x \in\left(x_{0}-r, x_{0}+r\right) \subseteq I$. Therefore, we have

$$
f(x)=f\left(x_{0}\right)+\frac{1}{2} f^{(2)}(x)\left(x-x_{0}\right)^{2} \geq f\left(x_{0}\right)
$$

for all $x \in\left(x_{0}-r, x_{0}+r\right)$ and thus, x_{0} is a local minimum point of f as desired.

Proposition 1.20. L'Hospital's Rule: Let f and g be the differentiable functions on (a, b) and let $c \in(a, b)$ Assume that $f(c)=g(c)=0$, in addition, $g^{\prime}(x) \neq 0$ and $g(x) \neq 0$ for all $x \in(a, b) \backslash\{c\}$. If the limit $L:=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then so does $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$, moreover, we have $L=\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$.
Proof. Fix $c<x<b$. Then by the Cauchy Mean Value Theorem, there is a point $x_{1} \in(c, x)$ such that

$$
\frac{f(x)}{g(x)}=\frac{f(x)-f(c)}{g(x)-g(c)}=\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}
$$

$x_{1} \in(c, x)$, so if $L:=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow c+} \frac{f(x)}{g(x)}$ exists and is equal to L.
Similarly, we also have $\lim _{x \rightarrow c-} \frac{f(x)}{g(x)}=L$. The proof is finished.

Proposition 1.21. Let f be a function on (a, b) and let $c \in(a, b)$.
(i) If $f^{\prime}(c)$ exists, then the following limit exists (also called the symmetric derivatives of f at c):

$$
f^{\prime}(c)=\lim _{t \rightarrow 0} \frac{f(c+t)-f(c-t)}{2 t}
$$

(ii) If $f^{(2)}(c)$ exists, then

$$
f^{(2)}(c)=\lim _{t \rightarrow 0} \frac{f(c+t)-2 f(c)+f(c-t)}{t^{2}}
$$

Proof. For showing (i), note that we have

$$
f^{\prime}(c)=\lim _{t \rightarrow 0+} \frac{f(c+t)-f(c)}{t}=\lim _{t \rightarrow 0-} \frac{f(c+t)-f(c)}{t}
$$

Putting $t=-s$ into the second equality above, we see that

$$
f^{\prime}(c)=\lim _{s \rightarrow 0+} \frac{f(c-s)-f(c)}{-s}
$$

To sum up the two equations above, we have

$$
f^{\prime}(c)=\lim _{t \rightarrow 0+} \frac{f(c+t)-f(c-t)}{2 t}
$$

Similarly, we have $f^{\prime}(c)=\lim _{t \rightarrow 0-} \frac{f(c+t)-f(c-t)}{2 t}$. Part (i) follows.
For showing Part $(i i)$, let $h(t):=f(c+t)-2 f(c)+f(c-t)$ for $t \in \mathbb{R}$. Then $h(0)=0$ and $h^{\prime}(t)=$ $f^{\prime}(c+t)-f^{\prime}(c-t)$. By using the L'Hospital's Rule and Part (i), we have

$$
\lim _{t \rightarrow 0} \frac{f(c+t)-2 f(c)+f(c-t)}{t^{2}}=\lim _{t \rightarrow 0} \frac{h^{\prime}(t)}{\left(t^{2}\right)^{\prime}}=\lim _{t \rightarrow 0} \frac{f^{\prime}(c+t)-f^{\prime}(c-t)}{2 t}=f^{(2)}(c)
$$

The proof is complete.

Definition 1.22. A function f defined on (a, b) is said to be convex if for any pair $a<x_{1}<x_{2}<b$, we have

$$
f\left((1-t) x_{1}+t x_{2}\right) \leq(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)
$$

for all $t \in[0,1]$.

Proposition 1.23. Let f be a C^{2} function on (a, b). Then f is a convex function if and only if $f^{(2)}(x) \geq 0$ for all $x \in(a, b)$.

Proof. For showing (\Rightarrow) : assume that f is a convex function. Fix a point $c \in(a, b) . f$ is convex, so we have $f(c)=f\left(\frac{1}{2}(c+t)+\frac{1}{2}(c-t)\right) \leq \frac{1}{2} f(c+t)+\frac{1}{2} f(c-t)$ for all $t \in \mathbb{R}$ with $c \pm t \in(a, b)$. By Proposition 1.21, we have

$$
f^{(2)}(c)=\lim _{t \rightarrow 0} \frac{f(c+t)-2 f(c)+f(c-t)}{t^{2}}
$$

Therefore, we have $f^{(2)}(c) \geq 0$.
For (\Leftarrow), assume that $f^{(2)}(x) \geq 0$ for all $x \in(a, b)$. Fix $a<x_{1}<x_{2}<b$ and $t \in[0,1]$. Let $c:=(1-t) x_{1}+t x_{2}$. Then by the Lagrange Reminder Theorem, there are points $z_{1} \in\left(x_{1}, c\right)$ and $z_{2} \in\left(c, x_{2}\right)$ such that

$$
f\left(x_{2}\right)=f(c)+f^{\prime}(c)\left(x_{2}-c\right)+\frac{1}{2} f^{(2)}\left(z_{2}\right)\left(x_{2}-c\right)^{2}
$$

and

$$
f\left(x_{1}\right)=f(c)+f^{\prime}(c)\left(x_{1}-c\right)+\frac{1}{2} f^{(2)}\left(z_{1}\right)\left(x_{1}-c\right)^{2} .
$$

These two equations implies that

$$
(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)=f(c)+(1-t) \frac{1}{2} f^{(2)}\left(z_{1}\right)\left(x_{1}-c\right)^{2}+t \frac{1}{2} f^{(2)}\left(z_{2}\right)\left(x_{2}-c\right)^{2} \geq f(c)
$$

since $f^{(2)}\left(z_{1}\right)$ and $f^{(2)}\left(z_{2}\right)$ both are non-negative. Thus, f is convex.

Corollary 1.24. Let $p>0$. The function $f(x):=x^{p}$ is convex on $(0, \infty)$ if and only if $p \geq 1$.
Proof. Note that $f^{(2)}(x)=p(p-1) x^{p-2}$ for all $x>0$. Then the result follows immediately from Proposition 1.23.

Proposition 1.25. Netwon's Method: Let f be a continuous real-valued function defined on $[a, b]$ with $f(a)<0<f(b)$ and $f(z)=0$ for some $z \in(a, b)$. Assume that f is a C^{2} function on (a, b) and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is $\delta>0$ with $J:=[z-\delta, z+\delta] \subseteq[a, b]$ which have the following property:
if we fix any $x_{1} \in J$ and let

$$
\begin{equation*}
x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.1}
\end{equation*}
$$

for $n=1,2, \ldots$, then we have $z=\lim x_{n}$.
Proof. We first choose $r>0$ such that $[z-r, z+r] \subseteq(a, b)$. We fix any point $x_{1} \in(z-r, z+r)$ with $x_{1} \neq z$. Then by the Lagrange Remainder Theorem, there is a point ξ between z and x_{1} such that

$$
0=f(z)=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(z-x_{1}\right)+\frac{1}{2} f^{(2)}(\xi)\left(z-x_{1}\right)^{2} .
$$

This, together with Eq 1.1 above, we have

$$
x_{2}-x_{1}=-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=z-x_{1}+\frac{f^{(2)}(\xi)}{2 f^{\prime}\left(x_{1}\right)}\left(z-x_{1}\right)^{2} .
$$

Therefore, we have

$$
\begin{equation*}
x_{2}-z=\frac{f^{(2)}(\xi)}{2 f^{\prime}\left(x_{1}\right)}\left(z-x_{1}\right)^{2} . \tag{1.2}
\end{equation*}
$$

Note that the functions $f^{\prime}(x)$ and $f^{(2)}(x)$ are continuous on $[z-r, z+r]$ and $f^{\prime}(x) \neq 0$, hence, there is $M>0$ such that $\left|\frac{\left.f^{2}\right)(u)}{2 f^{\prime}(v)}\right| \leq M$ for all $u, v \in[z-r, z+r]$. Then the Eq 1.2 implies that

$$
\begin{equation*}
\left|x_{2}-z\right|=\left|\frac{f^{(2)}(\xi)}{2 f^{\prime}\left(x_{1}\right)}\left(z-x_{1}\right)^{2}\right| \leq M\left(z-x_{1}\right)^{2} \tag{1.3}
\end{equation*}
$$

Choose $\delta>0$ such that $M \delta<1$ and $J:=[z-\delta, z+\delta] \subseteq(z-r, z+r)$. Note that Now we take any $x_{1} \in J$. Eq 1.3 implies that $\left|x_{2}-z\right| \leq M \cdot\left|z-x_{1}\right|^{2} \leq(M \delta) \cdot\left|x_{1}-z\right|<\delta$. By using Eq 1.1 inductively, we have a sequence $\left(x_{n}\right)$ in J such that

$$
\left|x_{n+1}-z\right| \leq M \cdot\left|z-x_{n}\right|^{2} \leq(M \delta) \cdot\left|x_{n}-z\right|
$$

for all $n=1,2 \ldots$. Therefore, we have

$$
\left|x_{n+1}-z\right| \leq(M \delta)^{n} \cdot\left|x_{1}-z\right|
$$

for all $n=1,2 \ldots$, thus, $\lim x_{n}=z$. The proof is complete.

2. Riemann Integrable Functions

We will use the following notation throughout this chapter.
(i): All functions $f, g, h \ldots$ are bounded real valued functions defined on $[a, b]$ and $m \leq f \leq M$ on $[a, b]$.
(ii): Let $P: a=x_{0}<x_{1}<\ldots<x_{n}=b$ denote a partition on $[a, b]$; Put $\Delta x_{i}=x_{i}-x_{i-1}$ and $\|P\|=\max \Delta x_{i}$.
(iii): $M_{i}(f, P):=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\} ; m_{i}(f, P):=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\}\right.\right.$.

Set $\omega_{i}(f, P)=M_{i}(f, P)-m_{i}(f, P)$.
(iv): (the upper sum of f): $U(f, P):=\sum M_{i}(f, P) \Delta x_{i}$
(the lower sum of f). L(f,P) $:=\sum m_{i}(f, P) \Delta x_{i}$.
Remark 2.1. It is clear that for any partition on $[a, b]$, we always have
(i) $m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$.
(ii) $L(-f, P)=-U(f, P)$ and $U(-f, P)=-L(f, P)$.

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on $[a, b]$. We have the following assertions.
(i) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
(ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i), we first claim that $L(f, P) \leq L(f, Q)$ if $P \subseteq Q$. By using the induction on $l:=\# Q-\# P$, it suffices to show that $L(f, P) \leq L(f, Q)$ as $l=1$. Let $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $Q=P \cup\{c\}$. Then $c \in\left(x_{s-1}, x_{s}\right)$ for some s. Notice that we have

$$
m_{s}(f, P) \leq \min \left\{m_{s}(f, Q), m_{s+1}(f, Q)\right\}
$$

So, we have

$$
m_{s}(f, P)\left(x_{s}-x_{s-1}\right) \leq m_{s}(f, Q)\left(c-x_{s-1}\right)+m_{s+1}(f, Q)\left(x_{s}-c\right)
$$

This gives the following inequality as desired.

$$
\begin{equation*}
L(f, Q)-L(f, P)=m_{s}(f, Q)\left(c-x_{s-1}\right)+m_{s+1}(f, Q)\left(x_{s}-c\right)-m_{s}(f, P)\left(x_{s}-x_{s-1}\right) \geq 0 . \tag{2.1}
\end{equation*}
$$

Now by considering $-f$ in the Inequality 2.1 above, we see that $U(f, Q) \leq U(f, P)$.
For Part (ii), let P and Q be any pair of partitions on $[a, b]$. Notice that $P \cup Q$ is also a partition on [a,b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (i) implies that

$$
L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)
$$

The proof is complete.

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on $[a, b]$. The upper integral (resp. lower integral) of f over $[a, b]$, write $\overline{\int_{a}^{b}} f$ (resp. $\underline{\int_{a}^{b} f \text {), is defined by }}$

$$
\overline{\int_{a}^{b}} f=\inf \{U(f, P): P \text { is a partation on }[a, b]\}
$$

(resp.

$$
\left.\underline{\int_{a}^{b}} f=\sup \{L(f, P): P \text { is a partation on }[a, b]\} .\right)
$$

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, \leq) a directed set if for each pair of elements i_{1} and i_{2} in I, there is $i_{3} \in I$ such that $i_{1} \leq i_{3}$ and $i_{2} \leq i_{3}$.
A net in \mathbb{R} is a real-valued function f defined on a directed set I, write $f=\left(x_{i}\right)_{i \in I}$, where $x_{i}:=f(i)$ for $i \in I$.
We say that a net $\left(x_{i}\right)$ converges to a point $L \in \mathbb{R}$ (call a limit of $\left(x_{i}\right)$) if for any $\varepsilon>0$, there is $i_{0} \in I$ such that $\left|x_{i}-L\right|<\varepsilon$ for all $i \geq i_{0}$.
Using the similar argument as in the sequence case, a limit of $\left(x_{i}\right)$ is unique if it exists and we write $\lim _{i} x_{i}$ for its limits.

Example 2.5. Appendix: Using the notation given as before, let

$$
I:=\{P: P \text { is a partitation on }[a, b]\}
$$

We say that $P_{1} \leq P_{2}$ for $P_{1}, P_{2} \in I$ if $P_{1} \subseteq P_{2}$. Clearly, I is a directed set with this order. If we put $u_{P}:=U((f, P)$, then we have

$$
\lim _{P} u_{P}=\overline{\int_{a}^{b}} f
$$

In fact, let $\varepsilon>0$. Then by the definition of an upper integral, there is $P_{0} \in I$ such that

$$
\overline{\int_{a}^{b}} f \leq U\left(f, P_{0}\right) \leq \overline{\int_{a}^{b}} f+\varepsilon
$$

Lemma 2.2 tells us that whenever $P \in I$ with $P \geq P_{0}$, we have $U(f, P) \leq U\left(f, P_{0}\right)$. Thus we have $\left|u_{P}-\overline{\int_{a}^{b}} f\right|<\varepsilon$ whenever $P \geq P_{0}$ as desired.

Proposition 2.6. Let f and g both are bounded functions on $[a, b]$. With the notation as above, we always have
(i)

$$
\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f
$$

(ii) $\underline{\int_{a}^{b}}(-f)=-\overline{\int_{a}^{b}} f$.
(iii)

$$
\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g \leq \underline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g
$$

Proof. Part (i) follows from Lemma 2.2 at once.
Part (ii) is clearly obtained by $L(-f, P)=-U(f, P)$.
For proving the inequality $\underline{\int_{a}^{b} f+\int_{a}^{b} g \leq \underline{\int_{a}^{b}}(f+g) \leq \text { first. It is clear that we have } L(f, P)+L(g, P) \leq, ~}$ $L(f+g, P)$ for all partitions P on $[a, b]$. Now let P_{1} and P_{2} be any partition on $[a, b]$. Then by Lemma 2.2, we have

$$
L\left(f, P_{1}\right)+L\left(g, P_{2}\right) \leq L\left(f, P_{1} \cup P_{2}\right)+L\left(g, P_{1} \cup P_{2}\right) \leq L\left(f+g, P_{1} \cup P_{2}\right) \leq \underline{\int_{a}^{b}}(f+g)
$$

So, we have

$$
\begin{equation*}
\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g \leq \underline{\int_{a}^{b}}(f+g) \tag{2.2}
\end{equation*}
$$

As before, we consider $-f$ and $-g$ in the Inequality 2.2 , we get $\overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g$ as desired.

The following example shows the strict inequality in Proposition 2.6 (iii) may hold in general.

Example 2.7. Define a function $f, g:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q} \\ -1 & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}-1 & \text { if } x \in[0,1] \cap \mathbb{Q} \\ 1 & \text { otherwise }\end{cases}
$$

Then it is easy to see that $f+g \equiv 0$ and

$$
\overline{\int_{0}^{1}} f=\overline{\int_{0}^{1}} g=1 \quad \text { and } \quad \underline{\int_{0}} f=\underline{\int_{0}^{1}} g=-1
$$

So, we have

$$
-2=\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g<\underline{\int_{a}^{b}}(f+g)=0=\overline{\int_{a}^{b}}(f+g)<\overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g=2
$$

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on $[a, b]$. We say that f is Riemann integrable over $[a, b]$ if $\overline{\int_{b}^{a}} f=\underline{\int_{a}^{b}} f$. In this case, we write $\int_{a}^{b} f$ for this common value and it is called the Riemann integral of f over $[a, b]$.
Also, write $R[a, b]$ for the class of Riemann integrable functions on $[a, b]$.

Proposition 2.9. With the notation as above, $R[a, b]$ is a vector space over \mathbb{R} and the integral

$$
\int_{a}^{b}: f \in R[a, b] \mapsto \int_{a}^{b} f \in \mathbb{R}
$$

defines a linear functional, that is, $\alpha f+\beta g \in R[a, b]$ and $\int_{a}^{b}(\alpha f+\beta g)=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g$ for all $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$.
Proof. Let $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$. Notice that if $\alpha \geq 0$, it is clear that $\overline{\int_{a}^{b}} \alpha f=\alpha \overline{\int_{a}^{b}} f=\alpha \int_{a}^{b} f=$ $\alpha \underline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} \alpha f$. Also, if $\alpha<0$, we have $\overline{\int_{a}^{b}} \alpha f=\alpha \underline{\int_{a}^{b}} f=\alpha \int_{a}^{b} f=\alpha \overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} \alpha f$. Therefore, we have $\int_{a}^{b} \alpha f=\alpha \int_{a}^{b} f$ for all $\alpha \in \mathbb{R}$. For showing $f+g \in R[a, b]$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$, these will follows from Proposition 2.6 (iii) at once. The proof is finished.

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter.
For a partition $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $1 \leq i \leq n$, put

$$
\omega_{i}(f, P):=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: x, x^{\prime} \in\left[x_{i-1}, x_{i}\right]\right\}
$$

It is easy to see that $U(f, P)-L(f, P)=\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}$.

Theorem 2.10. Let f be a bounded function on $[a, b]$. Then $f \in R[a, b]$ if and only if for all $\varepsilon>0$, there is a partition $P: a=x_{0}<\cdots<x_{n}=b$ on $[a, b]$ such that

$$
\begin{equation*}
0 \leq U(f, P)-L(f, P)=\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}<\varepsilon \tag{2.3}
\end{equation*}
$$

Proof. Suppose that $f \in R[a, b]$. Let $\varepsilon>0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f, P)<\overline{\int_{a}^{b}} f+\varepsilon$ and $\underline{\int_{a}^{b}} f-\varepsilon<L(f, Q)$. By considering the partition $P \cup Q$, we see that

$$
\underline{\int_{a}^{b}} f-\varepsilon<L(f, Q) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, P)<\overline{\int_{a}^{b}} f+\varepsilon
$$

Since $\int_{a}^{b} f=\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f$, we have $0 \leq U(f, P \cup Q)-L(f, P \cup Q)<2 \varepsilon$. So, the partition $P \cup Q$ is as desired.
Conversely, let $\varepsilon>0$, assume that the Inequality 2.3 above holds for some partition P. Notice that we have

$$
L(f, P) \leq \int_{a}^{b} f \leq \overline{\int_{a}^{b}} f \leq U(f, P)
$$

So, we have $0 \leq \overline{\int_{a}^{b}} f-\underline{\int_{a}^{b}} f<\varepsilon$ for all $\varepsilon>0$. The proof is finished.

Remark 2.11. Theorem 2.10 tells us that a bounded function f is Riemann integrable over $[a, b]$ if and only if the "size" of the discontinuous set of f is arbitrary small.

Example 2.12. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}\frac{1}{p} & \text { if } x=\frac{q}{p}, \text { where } p, q \text { are relatively prime positive integers } \\ 0 & \text { otherwise }\end{cases}
$$

Then $f \in R[0,1]$.
(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q}=\left\{z_{1}, z_{2}, \ldots\right\}$. So, if we let $m(D)$ be the "size" of the set D, then $m(D)=m\left(\bigcup_{i=1}^{\infty}\left\{z_{i}\right\}\right)=\sum_{i=1}^{\infty} m\left(\left\{z_{i}\right\}\right)=0$, in here, you may think that the size of each set $\left\{z_{i}\right\}$ is 0 .)
Proof. Let $\varepsilon>0$. By Theorem 2.10, it aims to find a partition P on $[0,1]$ such that

$$
U(f, P)-L(f, P)<\varepsilon
$$

Notice that for $x \in[0,1]$ such that $f(x) \geq \varepsilon$ if and only if $x=q / p$ for a pair of relatively prime positive integers p, q with $\frac{1}{p} \geq \varepsilon$. Since $1 \leq q \leq p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f\left(\frac{q}{p}\right) \geq \varepsilon$. So, if we let $S:=\{x \in[0,1]: f(x) \geq \varepsilon\}$, then S is a finite subset
of $[0,1]$. Let L be the number of the elements in S. Then, for any partition $P: a=x_{0}<\cdots<x_{n}=1$, we have

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}=\left(\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset}+\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset}\right) \omega_{i}(f, P) \Delta x_{i}
$$

Notice that if $\left[x_{i-1}, x_{i}\right] \cap S=\emptyset$, then we have $\omega_{i}(f, P) \leq \varepsilon$ and thus,

$$
\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon \sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset} \Delta x_{i} \leq \varepsilon(1-0)
$$

On the other hand, since there are at most $2 L$ sub-intervals $\left[x_{i-1}, x_{i}\right]$ such that $\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset$ and $\omega_{i}(f, P) \leq 1$ for all $i=1, \ldots, n$, so, we have

$$
\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset} \omega_{i}(f, P) \Delta x_{i} \leq 1 \cdot \sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset} \Delta x_{i} \leq 2 L\|P\|
$$

We can now conclude that for any partition P, we have

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon+2 L\|P\|
$$

So, if we take a partition P with $\|P\|<\varepsilon /(2 L)$, then we have $\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq 2 \varepsilon$.
The proof is finished.

Proposition 2.13. Let f be a function defined on $[a, b]$. If f is either monotone or continuous on $[a, b]$, then $f \in R[a, b]$.

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P: a=x_{0}<\cdots<x_{n}=b$, we have $\omega_{i}(f, P)=f\left(x_{i}\right)-f\left(x_{i-1}\right)$. So, if $\|P\|<\varepsilon$, we have
$\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}=\sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \Delta x_{i}<\|P\| \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)=\|P\|(f(b)-f(a))<\varepsilon(f(b)-f(a))$.
Therefore, $f \in R[a, b]$ if f is monotone.
Suppose that f is continuous on $[a, b]$. Then f is uniform continuous on $[a, b]$. Then for any $\varepsilon>0$, there is $\delta>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ as $x, x^{\prime} \in[a, b]$ with $\left|x-x^{\prime}\right|<\delta$. So, if we choose a partition P with $\|P\|<\delta$, then $\omega_{i}(f, P)<\varepsilon$ for all i. This implies that

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon \sum_{i=1}^{n} \Delta x_{i}=\varepsilon(b-a)
$$

The proof is complete.

Proposition 2.14. We have the following assertions.
(i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
(ii) If $f \in R[a, b]$, then the absolute valued function $|f| \in R[a, b]$. In this case, we have $\left|\int_{a}^{b} f\right| \leq$ $\int_{a}^{b}|f|$.

Proof. For Part (i), it is clear that we have the inequality $U(f, P) \leq U(g, P)$ for any partition P. So, we have $\int_{a}^{b} f=\overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g=\int_{a}^{b} g$.
For Part (ii), the integrability of $|f|$ follows immediately from Theorem 2.10 and the simple inequality $\left||f|\left(x^{\prime}\right)-|f|\left(x^{\prime \prime}\right)\right| \leq\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|$ for all $x^{\prime}, x^{\prime \prime} \in[a, b]$. Thus, we have $U(|f|, P)-L(|f|, P) \leq$
$U(f, P)-L(f, P)$ for any partition P on $[a, b]$.
Finally, since we have $-f \leq|f| \leq f$, by $\operatorname{Part}(i)$, we have $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$ at once.
Proposition 2.15. Let $a<c<b$. We have $f \in R[a, b]$ if and only if the restrictions $\left.f\right|_{[a, c]} \in R[a, c]$ and $\left.f\right|_{[c, b]} \in R[c, b]$. In this case we have

$$
\begin{equation*}
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f \tag{2.4}
\end{equation*}
$$

Proof. Let $f_{1}:=\left.f\right|_{[a, c]}$ and $f_{2}:=\left.f\right|_{[c, b]}$.
It is clear that we always have

$$
U\left(f_{1}, P_{1}\right)-L\left(f_{1}, P_{1}\right)+U\left(f_{2}, P_{2}\right)-L\left(f_{2}, P_{2}\right)=U(P, f)-L(f, P)
$$

for any partition P_{1} on $[a, c]$ and P_{2} on $[c, b]$ with $P=P_{1} \cup P_{2}$.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since $f \in R[a, b]$, for any $\varepsilon>0$, there is a partition Q on $[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$ by Theorem 2.10. Notice that there are partitions P_{1} and P_{2} on $[a, c]$ and $[c, b]$ respectively such that $P:=Q \cup\{c\}=P_{1} \cup P_{2}$. Thus, we have

$$
U\left(f_{1}, P_{1}\right)-L\left(f_{1}, P_{1}\right)+U\left(f_{2}, P_{2}\right)-L\left(f_{2}, P_{2}\right)=U(f, P)-L(f, P) \leq U(f, Q)-L(f, Q)<\varepsilon .
$$

So, we have $f_{1} \in R[a, c]$ and $f_{2} \in R[c, b]$.
It remains to show the Equation 2.4 above. Notice that for any partition P_{1} on $[a, c]$ and P_{2} on $[c, b]$, we have

$$
L\left(f_{1}, P_{1}\right)+L\left(f_{2}, P_{2}\right)=L\left(f, P_{1} \cup P_{2}\right) \leq \underline{\int_{a}^{b}} f=\int_{a}^{b} f
$$

So, we have $\int_{a}^{c} f+\int_{c}^{b} f \leq \int_{a}^{b} f$. Then the inverse inequality can be obtained at once by considering the function $-f$. Then the resulted is obtained by using Theorem 2.10.

Proposition 2.16. Let f and g be Riemann integrable functions defined ion $[a, b]$. Then the pointwise product function $f \cdot g \in R[a, b]$.
Proof. We first show that the square function f^{2} is Riemann integrable. In fact, if we let $M=$ $\sup \{|f(x)|: x \in[a, b]\}$, then we have $\omega_{k}\left(f^{2}, P\right) \leq 2 M \omega_{k}(f, P)$ for any partition $P: a=x_{0}<\cdots<$ $a_{n}=b$ because we always have $\left|f^{2}(x)-f^{2}\left(x^{\prime}\right)\right| \leq 2 M\left|f(x)-f\left(x^{\prime}\right)\right|$ for all $x, x^{\prime} \in[a, b]$. Then by Theorem 2.10, the square function $f^{2} \in R[a, b]$.
This, together with the identity $f \cdot g=\frac{1}{2}\left((f+g)^{2}-f^{2}-g^{2}\right)$. The result follows.
Remark 2.17. In the proof of Proposition 2.16, we have shown that if $f \in R[a, b]$, then so is its square function f^{2}. However, the converse does not hold. For example, if we consider $f(x)=1$ for $x \in \mathbb{Q} \cap[0,1]$ and $f(x)=-1$ for $x \in \mathbb{Q}^{c} \cap[0,1]$, then $f \notin R[0,1]$ but $f^{2} \equiv 1$ on $[0,1]$.

Proposition 2.18. (Mean Value Theorem for Integrals)

Let f and g be the functions defined on $[a, b]$. Assume that f is continuous and g is a non-negative Riemann integrable function. Then, there is a point $\xi \in(a, b)$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x \tag{2.5}
\end{equation*}
$$

Proof. By the continuity of f on $[a, b]$, there exist two points x_{1} and x_{2} in $[a, b]$ such that

$$
f\left(x_{1}\right)=m:=\min f(x) ; \text { and } f\left(x_{2}\right)=M:=\max f(x) .
$$

We may assume that $a \leq x_{1}<x_{2} \leq b$. From this, since $g \leq 0$, we have

$$
m g(x) \leq f(x) g(x) \leq M g(x)
$$

for all $x \in[a, b]$. From this and Proposition 2.16 above, we have

$$
m \int_{a}^{b} g \leq \int_{a}^{b} f g \leq M \int_{a}^{b} g
$$

So, if $\int_{a}^{b} g=0$, then the result follows at once.
We may now suppose that $\int_{a}^{b} g>0$. The above inequality shows that

$$
m=f\left(x_{1}\right) \leq \frac{\int_{a}^{b} f g}{\int_{a}^{b} g} \leq f\left(x_{2}\right)=M
$$

Therefore, there is a point $\xi \in\left[x_{1}, x_{2}\right] \subseteq[a, b]$ so that the Equation 2.5 holds by using the Intermediate Value Theorem for the function f. Thus, it remains to show that such element ξ can be chosen in (a, b).
Let $a \leq x_{1}<x_{2} \leq b$ be as above.
If x_{1} and x_{2} can be found so that $a<x_{1}<x_{2}<b$, then the result is proved immediately since $\xi \in\left[x_{1}, x_{2}\right] \subset(a, b)$ in this case.
Now suppose that x_{1} or x_{2} does not exist in (a, b), i.e., $m=f(a)<f(x)$ for all $x \in(a, b]$ or $f(x)<f(b)=M$ for all $x \in[a, b)$.
Claim 1: If $f(a)<f(x)$ for all $x \in(a, b]$, then $\int_{a}^{b} f g>f(a) \int_{a}^{b} g$ and hence, $\xi \in\left(a, x_{2}\right] \subseteq(a, b]$.
For showing Claim1, put $h(x):=f(x)-f(a)$ for $x \in[a, b]$. Then h is continuous on $[a, b]$ and $h>0$ on ($a, b]$. This implies that $\int_{c}^{d} h>0$ for any subinterval $[c, d] \subseteq[a, b]$. (Why?)
On the other hand, since $\int_{a}^{b} g=\int_{a}^{b} g>0$, there is a partition $P: a=x_{0}<\cdots<x_{n}=b$ so that $L(g, P)>0$. This implies that $m_{k}(g, P)>0$ for some sub-interval $\left[x_{k-1}, x_{k}\right]$. Therefore, we have

$$
\int_{a}^{b} h g \geq \int_{x_{k-1}}^{x_{k}} h g \geq m_{k}(g, P) \int_{x_{k-1}}^{x_{k}} h>0
$$

Hence, we have $\int_{a}^{b} f g>f(a) \int_{a}^{b} g$. Claim 1 follows.
Similarly, one can show that if $f(x)<f(b)=M$ for all $x \in[a, b)$, then we have $\int_{a}^{b} f g<f(b) \int_{a}^{b} g$. This, together with Claim 1 give us that such ξ can be found in (a, b). The proof is finished.

Now if $f \in R[a, b]$, then by Proposition 2.15 , we can define a function $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(c)= \begin{cases}0 & \text { if } c=a \tag{2.6}\\ \int_{a}^{c} f & \text { if } a<c \leq b\end{cases}
$$

Theorem 2.19. Fundamental Theorem of Calculus: With the notation as above, assume that $f \in R[a, b]$, we have the following assertion.
(i) If there is a continuous function F on $[a, b]$ which is differentiable on (a, b) with $F^{\prime}=f$, then $\int_{a}^{b} f=F(b)-F(a)$. In this case, F is called an indefinite integral of f. (note: if F_{1} and F_{2} both are the indefinite integrals of f, then by the Mean Value Theorem, we have $F_{2}=F_{1}+$ constant $)$.
(ii) The function F defined as in Eq. 2.6 above is continuous on $[a, b]$. Furthermore, if f is continuous on $[a, b]$, then F^{\prime} exists on (a, b) and $F^{\prime}=f$ on (a, b).

Proof. For Part (i), notice that for any partition $P: a=x_{0}<\cdots<x_{n}=b$, then by the Mean Value Theorem, for each $\left[x_{i-1}, x_{i}\right]$, there is $\xi_{i} \in\left(x_{i-1}, x_{i}\right)$ such that $F\left(x_{i}\right)-F\left(x_{i-1}\right)=F^{\prime}\left(\xi_{i}\right) \Delta x_{i}=f\left(\xi_{i}\right) \Delta x_{i}$. So, we have

$$
L(f, P) \leq \sum f\left(\xi_{i}\right) \Delta x_{i}=\sum F\left(x_{i}\right)-F\left(x_{i-1}\right)=F(b)-F(a) \leq U(f, P)
$$

for all partitions P on $[a, b]$. This gives

$$
\int_{a}^{b} f=\underline{\int_{a}^{b}} f \leq F(b)-F(a) \leq \overline{\int_{a}^{b}} f=\int_{a}^{b} f
$$

as desired.
For showing the continuity of F in Part (ii), let $a<c<x<b$. If $|f| \leq M$ on $[a, b]$, then we have $|F(x)-F(c)|=\left|\int_{c}^{x} f\right| \leq M(x-c)$. So, $\lim _{x \rightarrow c+} F(x)=F(c)$. Similarly, we also have $\lim _{x \rightarrow c-} F(x)=$ $F(c)$. Thus F is continuous on $[a, b]$.
Now assume that f is continuous on $[a, b]$. Notice that for any $t>0$ with $a<c<c+t<b$, we have

$$
\inf _{x \in[c, c+t]} f(x) \leq \frac{1}{t}(F(c+t)-F(c))=\frac{1}{t} \int_{c}^{c+t} f \leq \sup _{x \in[c, c+t]} f(x) .
$$

Since f is continuous at c, we see that $\lim _{t \rightarrow 0+} \frac{1}{t}(F(c+t)-F(c))=f(c)$. Similarly, we have $\lim _{t \rightarrow 0-0} \frac{1}{t}(F(c+$ $t)-F(c))=f(c)$. So, we have $F^{\prime}(c)=f(c)$ as desired. The proof is finished.

Definition 2.20. For each function f on $[a, b]$ and a partition $P: a=x_{0}<\cdots<x_{n}=b$, we call $R\left(f, P,\left\{\xi_{i}\right\}\right):=\sum_{I=1}^{N} f\left(\xi_{i}\right) \Delta x_{i}$, where $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$, the Riemann sum of f over $[a, b]$.
We say that the Riemann sum $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to a number A as $\|P\| \rightarrow 0$, write $A=$ $\lim _{\|P\| \rightarrow 0} R\left(f, P,\left\{\xi_{i}\right\}\right)$, if for any $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-R\left(f, P,\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

whenever $\|P\|<\delta$ and for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Proposition 2.21. Let f be a function defined on $[a, b]$. If the limit $\lim _{\|P\| \rightarrow 0} R\left(f, P,\left\{\xi_{i}\right\}\right)=A$ exists, then f is automatically bounded.
Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition $P: a=x_{0}<$ $\cdots<x_{n}=b$ such that $\left|\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k}\right|<1+|A|$ for any $\xi_{k} \in\left[x_{k-1}, x_{k}\right]$. Since f is unbounded, we may assume that f is unbounded on $\left[a, x_{1}\right]$. In particular, we choose $\xi_{k}=x_{k}$ for $k=2, \ldots, n$. Also, we can choose $\xi_{1} \in\left[a, x_{1}\right]$ such that

$$
\left|f\left(\xi_{1}\right)\right| \Delta x_{1}>1+|A|+\left|\sum_{k=2}^{n} f\left(x_{k}\right) \Delta x_{k}\right| .
$$

It leads to a contradiction because we have $1+|A|>\left|f\left(\xi_{1}\right)\right| \Delta x_{1}-\left|\sum_{k=2}^{n} f\left(x_{k}\right) \Delta x_{k}\right|$. The proof is finished.

Lemma 2.22. $f \in R[a, b]$ if and only if for any $\varepsilon>0$, there is $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ whenever $\|P\|<\delta$.

Proof. The converse follows from Theorem 2.10.
Assume that f is integrable over $[a, b]$. Let $\varepsilon>0$. Then there is a partition $Q: a=y_{0}<\ldots<y_{l}=b$ on
$[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$. Now take $0<\delta<\varepsilon / l$. Suppose that $P: a=x_{0}<\ldots<x_{n}=b$ with $\|P\|<\delta$. Then we have

$$
U(f, P)-L(f, P)=I+I I
$$

where

$$
I=\sum_{i: Q \cap\left[x_{i-1}, x_{i}\right]=\emptyset} \omega_{i}(f, P) \Delta x_{i}
$$

and

$$
I I=\sum_{i: Q \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \omega_{i}(f, P) \Delta x_{i}
$$

Notice that we have

$$
I \leq U(f, Q)-L(f, Q)<\varepsilon
$$

and

$$
I I \leq(M-m) \sum_{i: Q \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \Delta x_{i} \leq(M-m) \cdot 2 l \cdot \frac{\varepsilon}{l}=2(M-m) \varepsilon
$$

The proof is finished.

Theorem 2.23. $f \in R[a, b]$ if and only if the Riemann $\operatorname{sum} R\left(f, P,\left\{\xi_{i}\right\}\right)$ is convergent. In this case, $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$ as $\|P\| \rightarrow 0$.
Proof. For the proof (\Rightarrow) : we first note that we always have

$$
L(f, P) \leq R\left(f, P,\left\{\xi_{i}\right\}\right) \leq U(f, P)
$$

and

$$
L(f, P) \leq \int_{a}^{b} f(x) d x \leq U(f, P)
$$

for any partition P and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Now let $\varepsilon>0$. Lemma 2.22 gives $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ as $\|P\|<\delta$. Then we have

$$
\left|\int_{a}^{b} f(x) d x-R\left(f, P,\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

as $\|P\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$. The necessary part is proved and $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$. For (\Leftarrow) : assume that there is a number A such that for any $\varepsilon>0$, there is $\delta>0$, we have

$$
A-\varepsilon<R\left(f, P,\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

for any partition P with $\|P\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Note that f is automatically bounded in this case by Proposition 2.21.
Now fix a partition P with $\|P\|<\delta$. Then for each $\left[x_{i-1}, x_{i}\right]$, choose $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $M_{i}(f, P)-\varepsilon \leq f\left(\xi_{i}\right)$. This implies that we have

$$
U(f, P)-\varepsilon(b-a) \leq R\left(f, P,\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

Thus, we have shown that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
\begin{equation*}
\overline{\int_{a}^{b}} f(x) d x \leq U(f, P) \leq A+\varepsilon(1+b-a) \tag{2.7}
\end{equation*}
$$

By considering $-f$, note that the Riemann sum of $-f$ will converge to $-A$. The inequality 2.7 will imply that for any $\varepsilon>0$, there is a partition P such that

$$
A-\varepsilon(1+b-a) \leq \underline{\int_{a}^{b}} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x \leq A+\varepsilon(1+b-a)
$$

The proof is complete.

Theorem 2.24. Let $f \in R[c, d]$ and let $\phi:[a, b] \longrightarrow[c, d]$ be a strictly increasing C^{1} function with $f(a)=c$ and $f(b)=d$.
Then $f \circ \phi \in R[a, b]$, moreover, we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t
$$

Proof. Let $A=\int_{c}^{d} f(x) d x$. By using Theorem 2.23, we need to show that for all $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon
$$

for all $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ whenever $Q: a=t_{0}<\ldots<t_{m}=b$ with $\|Q\|<\delta$.
Now let $\varepsilon>0$. Then by Lemma 2.22 and Theorem 2.23, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|A-\sum f\left(\eta_{k}\right) \triangle x_{k}\right|<\varepsilon \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \omega_{k}(f, P) \triangle x_{k}<\varepsilon \tag{2.9}
\end{equation*}
$$

for all $\eta_{k} \in\left[x_{k-1}, x_{k}\right]$ whenever $P: c=x_{0}<\ldots<x_{m}=d$ with $\|P\|<\delta_{1}$.
Now put $x=\phi(t)$ for $t \in[a, b]$.
Now since ϕ and ϕ^{\prime} are continuous on $[a, b]$, there is $\delta>0$ such that $\left|\phi(t)-\phi\left(t^{\prime}\right)\right|<\delta_{1}$ and $\mid \phi^{\prime}(t)-$ $\phi^{\prime}\left(t^{\prime}\right) \mid<\varepsilon$ for all t, t^{\prime} in $[a, b]$ with $\left|t-t^{\prime}\right|<\delta$.
Now let $Q: a=t_{0}<\ldots<t_{m}=b$ with $\|Q\|<\delta$. If we put $x_{k}=\phi\left(t_{k}\right)$, then $P: c=x_{0}<\ldots .<x_{m}=d$ is a partition on $[c, d]$ with $\|P\|<\delta_{1}$ because ϕ is strictly increasing.
Note that the Mean Value Theorem implies that for each $\left[t_{k-1}, t_{k}\right]$, there is $\xi_{k}^{*} \in\left(t_{k-1}, t_{k}\right)$ such that

$$
\Delta x_{k}=\phi\left(t_{k}\right)-\phi\left(t_{k-1}\right)=\phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}
$$

This yields that

$$
\begin{equation*}
\left|\triangle x_{k}-\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon \Delta t_{k} \tag{2.10}
\end{equation*}
$$

for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ for all $k=1, \ldots, m$ because of the choice of δ.
Now for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{align*}
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| & \leq\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right| \\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \tag{2.11}\\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|
\end{align*}
$$

Notice that inequality 2.8 implies that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right|=\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \triangle x_{k}\right|<\varepsilon
$$

Moreover, since we have $\left|\phi^{\prime}\left(\xi_{k}^{*}\right)-\phi^{\prime}\left(\xi_{k}\right)\right|<\varepsilon$ for all $k=1, . ., m$, we have

$$
\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq M(b-a) \varepsilon
$$

where $|f(x)| \leq M$ for all $x \in[c, d]$.
On the other hand, by using inequality 2.10 we have

$$
\left|\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq \triangle x_{k}+\varepsilon \Delta t_{k}
$$

for all k. This, together with inequality 2.9 imply that

$$
\begin{aligned}
& \left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \\
& \leq \sum \omega_{k}(f, P)\left|\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|\left(\because \phi\left(\xi_{k}^{*}\right), \phi\left(\xi_{k}\right) \in\left[x_{k-1}, x_{k}\right]\right) \\
& \leq \sum \omega_{k}(f, P)\left(\triangle x_{k}+\varepsilon \triangle t_{k}\right) \\
& \leq \varepsilon+2 M(b-a) \varepsilon
\end{aligned}
$$

Finally by inequality 2.11 , we have

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq \varepsilon+M(b-a) \varepsilon+\varepsilon+2 M(b-a) \varepsilon
$$

The proof is complete.

3. Improper Riemann Integrals

Definition 3.1. Let $-\infty<a<b<\infty$.
(i) Let f be a function defined on $[a, \infty)$. Assume that the restriction $\left.f\right|_{[a, T]}$ is integrable over $[a, T]$ for all $T>a$. Put $\int_{a}^{\infty} f:=\lim _{T \rightarrow \infty} \int_{a}^{T} f$ if this limit exists
Similarly, we can define $\int_{-\infty}^{b} f$ if f is defined on $(-\infty, b]$.
(ii) If f is defined on $(a, b]$ and $\left.f\right|_{[c, b]} \in R[c, b]$ for all $a<c<b$. Put $\int_{a}^{b} f:=\lim _{c \rightarrow a+} \int_{c}^{b} f$ if it exists.
Similarly, we can define $\int_{a}^{b} f$ if f is defined on $[a, b)$.
(iii) As f is defined on \mathbb{R}, if $\int_{0}^{\infty} f$ and $\int_{-\infty}^{0} f$ both exist, then we put $\int_{-\infty}^{\infty} f=\int_{-\infty}^{0} f+\int_{0}^{\infty} f$.

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the integrals are convergent.

Example 3.2. Define (formally) an improper integral $\Gamma(s)$ (called the Γ-function) as follows:

$$
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if $s>0$.
Proof. Put $I(s):=\int_{0}^{1} x^{s-1} e^{-x} d x$ and $I I(s):=\int_{1}^{\infty} x^{s-1} e^{-x} d x$. We first claim that the integral $I I(s)$ is convergent for all $s \in \mathbb{R}$.
In fact, if we fix $s \in \mathbb{R}$, then we have

$$
\lim _{x \rightarrow \infty} \frac{x^{s-1}}{e^{x / 2}}=0
$$

So there is $M>1$ such that $\frac{x^{s-1}}{e^{x / 2}} \leq 1$ for all $x \geq M$. Thus we have

$$
0 \leq \int_{M}^{\infty} x^{s-1} e^{-x} d x \leq \int_{M}^{\infty} e^{-x / 2} d x<\infty
$$

CHI-WAI LEUNG

Therefore we need to show that the integral $I(s)$ is convergent if and only if $s>0$. Note that for $0<\eta<1$, we have

$$
0 \leq \int_{\eta}^{1} x^{s-1} e^{-x} d x \leq \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{1}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -\ln \eta & \text { otherwise }\end{cases}
$$

Thus the integral $I(s)=\lim _{\eta \rightarrow 0+} \int_{\eta}^{1} x^{s-1} e^{-x} d x$ is convergent if $s>0$.
Conversely, we also have

$$
\int_{\eta}^{1} x^{s-1} e^{-x} d x \geq e^{-1} \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{e^{-1}}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -e^{-1} \ln \eta & \text { otherwise }\end{cases}
$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} d x$ is divergent as $\eta \rightarrow 0+$. The result follows.

